Friday, March 20, 2015

Adventures in science-ing among the general public

I've been running an informal experiment in social situations, based on an example by physicist Eric Mazur:

A light car moving fast collides with a slow heavy truck. Which of the following options is true?

a) The force that the car exerts on the truck is smaller than the force that the truck exerts on the car.


b) The force that the car exerts on the truck is equal to the force that the truck exerts on the car.


c) The force that the car exerts on the truck is larger than the force that the truck exerts on the car.


d) To know which force is larger (that of the car on the truck or that of the truck on the car) we need to know more details, for example the speed and weight (mass, really) of each vehicle.


The majority in my convenience sample pick the last option, d. Included in this sample are people with science and engineering degrees. Most of the people I asked this question can quote Newton's third law of motion: when prompted with "every action has..." they complete it with "an equal and opposite reaction."

So far my convenience sample replicates Mazur's results.

But unlike his measurement (which was made with those classroom clickers that universities use to avoid hiring more faculty and having smaller, more personalized class sessions), mine sometimes comes with arguments, explanations, and resistance.

And here's the interesting part: the farther the person's training or occupation is from science and technology, the stronger their objections and attempts to argue for d, even as they quote Newton. I don't think this is the Dunning-Kruger effect. It's more like a disconnect between concept, principle, meaning, and application.

It's not like linking concepts to principles and meaning and then applying those concepts is important, right? Especially in science and engineering...